58. The solution of
$$x \frac{dy}{dx} + y = e^x$$
 is

(a)
$$y = \frac{e^x}{x} + \frac{k}{x}$$
 (b) $y = xe^x + cx$ (c) $y = xe^x + k$ (d) $x = \frac{e^y}{y} + \frac{k}{y}$

Sol. (a) We have,
$$x \frac{dy}{dx} + y = e^x$$

$$\Rightarrow \frac{dy}{dx} + \frac{y}{x} = \frac{e^x}{x}$$

This is a linear differential equation.

On comparing it with $\frac{dy}{dx} + Py = Q$, we get

$$P = \frac{1}{x} \text{ and } Q = \frac{e^x}{x}$$

$$LF_x = e^{\int \frac{1}{x} dx} = e^{(\log x)} = x$$

So, the general solution is:

$$y \cdot x = \int \frac{e^x}{x} x \, dx$$

$$\Rightarrow \qquad y \cdot x = \int e^x \, dx$$

$$\Rightarrow \qquad y \cdot x = e^x + k$$

$$\Rightarrow \qquad y = \frac{e^x}{x} + \frac{k}{x}$$

Basic textbook example of LDEs. And when you look at other problems related to these concepts. They have the same procedure as this one.